THE ORIGIN OF SPECIES BY MEANS OF NATURAL SELECTION, OR THE PRESERVATION OF FAVOURED RACES IN THE STRUGGLE FOR LIFE. CF1V003045 # By CHARLES DARWIN, M.A., FELLOW OF THE ROYAL, GEOLOGICAL, LINNEAN, ETC., SOCIETIES; AUTHOR OF 'JOURNAL OF RESEARCHES DURING H. M. S. BEAGLE'S VOYAGE ROUND THE WORLD.' LONDON: JOHN MURRAY, ALBEMARLE STREET. 1860. # ON THE ORIGIN OF SPECIES. ## INTRODUCTION. When on board H.M.S. 'Beagle,' as naturalist, I was much struck with certain facts in the distribution of the inhabitants of South America, and in the geological relations of the present to the past inhabitants of that continent. These facts seemed to me to throw some light on the origin of species—that mystery of mysteries, as it has been called by one of our greatest philosophers. On my return home, it occurred to me, in 1837, that something might perhaps be made out on this question by patiently accumulating and reflecting on all sorts of facts which could possibly have any bearing on it. After five years' work I allowed myself to speculate on the subject, and drew up some short notes; these I enlarged in 1844 into a sketch of the conclusions, which then seemed to me probable: from that period to the present day I have steadily pursued the same object. I hope that I may be excused for entering on these personal details, as I give them to show that I have not been hasty in coming to a decision. My work is now nearly finished; but as it will take me two or three more years to complete it, and as my health is far from strong, I have been urged to publish this Abstract. I have more especially been induced to do this, as Mr. Wallace, who is now studying the natural history of the Malay archipelago, has arrived at almost exactly the same general conclusions that I have on the origin of species. Last year he sent me a memoir on this subject, with a request that I would forward it to Sir Charles Lyell, who sent it to the Linnean Society, and it is published in the third volume of the Journal of that Society. Sir C. Lyell and Dr. Hooker, who both knew of my work—the latter having read my sketch of 1844—honoured me by thinking it advisable to publish, with Mr. Wallace's excellent memoir, some brief extracts from my manuscripts. This Abstract, which I now publish, must necessarily be imperfect. I cannot here give references and authorities for my several statements; and I must trust to the reader reposing some confidence in my accuracy. No doubt errors will have crept in, though I hope I have always been cautious in trusting to good authorities alone. I can here give only the general conclusions at which I have arrived, with a few facts in illustration, but which, I hope, in most cases will suffice. No one can feel more sensible than I do of the necessity of hereafter publishing in detail all the facts, with references, on which my conclusions have been grounded; and I hope in a future work to do this. For I am well aware that scarcely a single point is discussed in this volume on which facts cannot be adduced, often apparently leading to conclusions directly opposite to those at which I have arrived. A fair result can be obtained only by fully stating and balancing the facts and arguments on both sides of each question; and this cannot possibly be here done. I much regret that want of space prevents my having the satisfaction of acknowledging the generous assistance which I have received from very many naturalists, some of them personally unknown to me. I cannot, however, let this opportunity pass without expressing my deep obligations to Dr. Hooker, who for the last fifteen years has aided me in every possible way by his large stores of knowledge and his excellent judgment. In considering the Origin of Species, it is quite conceivable that a naturalist, reflecting on the mutual affinities of organic beings, on their embryological relations, their geographical distribution, geological succession, and other such facts, might come to the conclusion that each species had not been independently created, but had descended, like varieties, from other species. Nevertheless, such a conclusion, even if well founded, would be unsatisfactory, until it could be shown how the innumerable species inhabiting this world have been modified, so as to acquire that perfection of structure and coadaptation which most justly excites our admiration. Naturalists continually refer to external conditions, such as climate, food, &c., as the only possible cause of variation. In one very limited sense, as we shall hereafter see, this may be true; but it is preposterous to attribute to mere external conditions, the structure, for instance, of the woodpecker, with its feet, tail, beak, and tongue, so admirably adapted to catch insects under the bark of trees. In the case of the misseltoe, which draws its nourishment from certain trees, which has seeds that must be transported by certain birds, and which has flowers with separate sexes absolutely requiring the agency of certain insects to bring pollen from one flower to the other, it is equally preposterous to account for the structure of this parasite, with its relations to several distinct organic beings, by the effects of external conditions, or of habit, or of the volition of the plant itself. The author of the 'Vestiges of Creation' would, I presume, say that, after a certain unknown number of generations, some bird had given birth to a woodpecker, and some plant to the missletoe, and that these had been produced perfect as we now see them; but this assumption seems to me to be no explanation, for it leaves the case of the coadaptations of organic beings to each other and to their physical conditions of life, un- touched and unexplained. It is, therefore, of the highest importance to gain a clear insight into the means of modification and coadaptation. At the commencement of my observations it seemed to me probable that a careful study of domesticated animals and of cultivated plants would offer the best chance of making out this obscure problem. Nor have I been disappointed; in this and in all other perplexing cases I have invariably found that our knowledge, imperfect though it be, of variation under domestication, afforded the best and safest clue. I may venture to express my conviction of the high value of such studies, although they have been very commonly neglected by naturalists. From these considerations, I shall devote the first chapter of this Abstract to Variation under Domestication. We shall thus see that a large amount of hereditary modification is at least possible; and, what is equally or more important, we shall see how great is the power of man in accumulating by his Selection successive slight variations. I will then pass on to the variability of species in a state of nature; but I shall, unfortunately, be compelled to treat this subject far too briefly, as it can be treated properly only by giving long catalogues of facts. We shall, however, be enabled to discuss what circumstances are most favourable to variation. In the next chapter the Struggle for Existence amongst all organic beings throughout the world, which inevitably follows from the high geometrical ratio of their increase, will be treated of. This is the doctrine of Malthus, applied to the whole animal and vegetable kingdoms. As many more individuals of each species are born than can possibly survive; and as, consequently, there is a frequently recurring struggle for existence, it follows that any being, if it vary however slightly in any manner profitable to itself, under the complex and sometimes varying conditions of life, will have a better chance of surviving, and thus be naturally selected. From the strong principle of inheritance, any selected variety will tend to propagate its new and modified form. This fundamental subject of Natural Selection will be treated at some length in the fourth chapter; and we shall then see how Natural Selection almost inevitably causes much Extinction of the less improved forms of life, and leads to what I have called Divergence of Character. In the next chapter I shall discuss the complex and little known laws of variation and of correlation of growth. In the four succeeding chapters, the most apparent and gravest difficulties on the theory will be given: namely, first, the difficulties of transitions, or in understanding how a simple being or a simple organ can be changed and perfected into a highly developed being or elaborately constructed organ; secondly, the subject of Instinct, or the mental powers of animals; thirdly, Hybridism, or the infertility of species and the fertility of varieties when intercrossed; and fourthly, the imperfection of the Geological Record. In the next chapter I shall consider the geological succession of organic beings throughout time; in the eleventh and twelfth, their geographical distribution throughout space; in the thirteenth, their classification or mutual affinities, both when mature and in an embryonic condition. In the last chapter I shall give a brief recapitulation of the whole work, and a few concluding remarks. No one ought to feel surprise at much remaining as yet unexplained in regard to the origin of species and varieties, if he makes due allowance for our profound ignorance in regard to the mutual relations of all the beings which live around us. Who can explain why one species ranges widely and is very numerous, and why another allied species has a narrow range and is rare? Yet these relations are of the highest importance, for they determine the present welfare, and, as I believe, the future success and modification of every inhabitant of this world. Still less do we know of the mutual relations of the innumerable inhabitants of the world during the many past geological epochs in its history. Although much remains obscure, and will long remain obscure, I can entertain no doubt, after the most deliberate study and dispassionate judgment of which I am capable, that the view which most naturalists entertain, and which I formerly entertained-namely, that each species has been independently created—is erroneous. I am fully convinced that species are not immutable; but that those belonging to what are called the same genera are lineal descendants of some other and generally extinct species, in the same manner as the acknowledged varieties of any one species are the descendants of that species. Furthermore, I am convinced that Natural Selection has been the main but not exclusive means of modification. ### CHAPTER I. #### VARIATION UNDER DOMESTICATION. Causes of Variability—Effects of Habit—Correlation of Growth—Inheritance—Character of Domestic Varieties—Difficulty of distinguishing between Varieties and Species—Origin of Domestic Varieties from one or more Species—Domestic Pigeons, their Differences and Origin—Principle of Selection anciently followed, its Effects—Methodical and Unconscious Selection—Unknown Origin of our Domestic Productions—Circumstances favourable to Man's power of Selection. When we look to the individuals of the same variety or sub-variety of our older cultivated plants and animals, one of the first points which strikes us, is, that they generally differ more from each other than do the individuals of any one species or variety in a state of nature. When we reflect on the vast diversity of the plants and animals which have been cultivated, and which have varied during all ages under the most different climates and treatment, I think we are driven to conclude that this great variability is simply due to our domestic productions having been raised under conditions of life not so uniform as, and somewhat different from, those to which the parent-species have been exposed under nature. There is also, I think, some probability in the view propounded by Andrew Knight, that this variability may be partly connected with excess of food. It seems pretty clear that organic beings must be exposed during several generations to the new conditions of life to cause any appreciable amount of variation; and that when the organisation has once begun to vary, it generally continues to vary for many generations. been produced by the crossing of a few aboriginal species; but by crossing we can only get forms in some degree intermediate between their parents; and if we account for our several domestic races by this process, we must admit the former existence of the most extreme forms, as the Italian greyhound, bloodhound, bull-dog, &c., in the wild state. Moreover, the possibility of making distinct races by crossing has been greatly exaggerated. There can be no doubt that a race may be modified by occasional crosses, if aided by the careful selection of those individual mongrels, which present any desired character; but that a race could be obtained nearly intermediate between two extremely different races or species, I can hardly believe. Sir J. Sebright expressly experimentised for this object, and failed. The offspring from the first cross between two pure breeds is tolerably and sometimes (as I have found with pigeons) extremely uniform, and everything seems simple enough; but when these mongrels are crossed one with another for several generations, hardly two of them will be alike, and then the extreme difficulty, or rather utter hopelessness, of the task becomes apparent. Certainly. a breed intermediate between two very distinct breeds could not be got without extreme care and long-continued selection; nor can I find a single case on record of a permanent race having been thus formed. On the Breeds of the Domestic Pigeon.—Believing that it is always best to study some special group, I have, after deliberation, taken up domestic pigeons. I have kept every breed which I could purchase or obtain, and have been most kindly favoured with skins from several quarters of the world, more especially by the Hon. W. Elliot from India, and by the Hon. C. Murray from Persia. Many treatises in different languages have been published on pigeons, and some of them are very important, as being of con- ## CHAPTER II. VARIATION UNDER NATURE. Variability — Individual differences — Doubtful species — Wide ranging, much diffused, and common species vary most — Species of the larger genera in any country vary more than the species of the smaller genera — Many of the species of the larger genera resemble varieties in being very closely, but unequally, related to each other, and in having restricted ranges. Before applying the principles arrived at in the last chapter to organic beings in a state of nature, we must briefly discuss whether these latter are subject to any variation. To treat this subject at all properly, a long catalogue of dry facts should be given; but these I shall reserve for my future work. Nor shall I here discuss the various definitions which have been given of the term species. No one definition has as yet satisfied all naturalists; yet every naturalist knows vaguely what he means when he speaks of a species. Generally the term includes the unknown element of a distinct act of creation. The term "variety" is almost equally difficult to define; but here community of descent is almost universally implied, though it can rarely be proved. We have also what are called monstrosities; but they graduate into varieties. By a monstrosity I presume is meant some considerable deviation of structure in one part, either injurious to or not useful to the species, and not generally propagated. Some authors use the term "variation" in a technical sense, as implying a modification directly due to the physical conditions of life; and "variations" in this sense are supposed not to be inherited: but who can say that the dwarfed condition of shells in the brackish waters of the Baltic, or dwarfed plants on Alpine summits, or the thicker fur of an animal from far northwards, would not in some cases be inherited for at least some few generations? and in this case I presume that the form would be called a variety. Again, we have many slight differences which may be called individual differences, such as are known frequently to appear in the offspring from the same parents. or which may be presumed to have thus arisen, from being frequently observed in the individuals of the same species inhabiting the same confined locality. No one supposes that all the individuals of the same species are cast in the very same mould. These individual differences are highly important for us, as they afford materials for natural selection to accumulate, in the same manner as man can accumulate in any given direction individual differences in his domesticated productions. These individual differences generally affect what naturalists consider unimportant parts; but I could show by a long catalogue of facts, that parts which must be called important, whether viewed under a physiological or classificatory point of view, sometimes vary in the individuals of the same species. I am convinced that the most experienced naturalist would be surprised at the number of the cases of variability, even in important parts of structure, which he could collect on good authority, as I have collected, during a course of years. It should be remembered that systematists are far from pleased at finding variability in important characters, and that there are not many men who will laboriously examine internal and important organs, and compare them in many specimens of the same species. I should never have expected that the branching of the main nerves close to the great central ganglion of an insect would have been variable in the same species; I should have expected that changes of this nature could have been effected only ### CHAPTER III. STRUGGLE FOR EXISTENCE. Bears on natural selection — The term used in a wide sense — Geometrical powers of increase — Rapid increase of naturalised animals and plants — Nature of the checks to increase — Competition universal — Effects of climate — Protection from the number of individuals — Complex relations of all animals and plants throughout nature—Struggle for life most severe between individuals and varieties of the same species; often severe between species of the same genus — The relation of organism to organism the most important of all relations. Before entering on the subject of this chapter, I must make a few preliminary remarks, to show how the struggle for existence bears on Natural Selection. It has been seen in the last chapter that amongst organic beings in a state of nature there is some individual variability: indeed I am not aware that this has ever been disputed. It is immaterial for us whether a multitude of doubtful forms be called species or sub-species or varieties; what rank, for instance, the two or three hundred doubtful forms of British plants are entitled to hold, if the existence of any well-marked varieties be admitted. But the mere existence of individual variability and of some few well-marked varieties, though necessary as the foundation for the work, helps us but little in understanding how species arise in nature. How have all those exquisite adaptations of one part of the organisation to another part, and to the conditions of life, and of one distinct organic being to another being, been perfected? We see these beautiful co-adaptations most plainly in the woodpecker and missletoe; and only a little less plainly in the humblest parasite which clings to the hairs of a quadruped or feathers of a bird; in the structure of the beetle which dives through the water; in the plumed seed which is wafted by the gentlest breeze; in short, we see beautiful adaptations every- where and in every part of the organic world. Again, it may be asked, how is it that varieties, which I have called incipient species, become ultimately converted into good and distinct species, which in most cases obviously differ from each other far more than do the varieties of the same species? How do those groups of species, which constitute what are called distinct genera, and which differ from each other more than do the species of the same genus, arise? All these results, as we shall more fully see in the next chapter, follow from the struggle for life. Owing to this struggle for life, any variation, however slight, and from whatever cause proceeding, if it be in any degree profitable to an individual of any species, in its infinitely complex relations to other organic beings and to external nature, will tend to the preservation of that individual, and will generally be inherited by its offspring. The offspring, also, will thus have a better chance of surviving, for, of the many individuals of any species which are periodically born, but a small number can survive. I have called this principle, by which each slight variation, if useful, is preserved, by the term of Natural Selection, in order to mark its relation to man's power of selection. We have seen that man by selection can certainly produce great results, and can adapt organic beings to his own uses, through the accumulation of slight but useful variations, given to him by the hand of Nature. But Natural Selection, as we shall hereafter see, is a power incessantly ready for action, and is as #### CHAPTER IV. NATURAL SELECTION. Natural Selection — its power compared with man's selection — its power on characters of trifling importance—its power at all ages and on both sexes—Sexual Selection—On the generality of intercrosses between individuals of the same species — Circumstances favourable and unfavourable to Natural Selection, namely, intercrossing, isolation, number of individuals—Slow action—Extinction caused by Natural Selection — Divergence of Character, related to the diversity of inhabitants of any small area, and to naturalisation — Action of Natural Selection, through Divergence of Character and Extinction, on the descendants from a common parent—Explains the Grouping of all organic beings. How will the struggle for existence, discussed too briefly in the last chapter, act in regard to variation? Can the principle of selection, which we have seen is so potent in the hands of man, apply in nature? I think we shall see that it can act most effectually. Let it be borne in mind in what an endless number of strange peculiarities our domestic productions, and, in a lesser degree, those under nature, vary; and how strong the hereditary tendency is. Under domestication, it may be truly said that the whole organisation becomes in some degree plastic. Let it be borne in mind how infinitely complex and close-fitting are the mutual relations of all organic beings to each other and to their physical conditions of life. Can it, then, be thought improbable, seeing that variations useful to man have undoubtedly occurred, that other variations useful in some way to each being in the great and complex battle of life, should sometimes occur in the course of thousands of generations? If such do occur, can we doubt (remembering that many more individuals are born than can possibly survive) that individuals having any advantage, however slight, over others, would have the best chance of surviving and of procreating their kind? On the other hand, we may feel sure that any variation in the least degree injurious would be rigidly destroyed. This preservation of favourable variations and the rejection of injurious variations, I call Natural Selection. Variations neither useful nor injurious would not be affected by natural selection, and would be left a fluctuating element, as perhaps we see in the species called polymorphic. We shall best understand the probable course of natural selection by taking the case of a country undergoing some physical change, for instance, of climate. The proportional numbers of its inhabitants would almost immediately undergo a change, and some species might become extinct. We may conclude, from what we have seen of the intimate and complex manner in which the inhabitants of each country are bound together, that any change in the numerical proportions of some of the inhabitants, independently of the change of climate itself, would seriously affect many of the others. If the country were open on its borders, new forms would certainly immigrate, and this also would seriously disturb the relations of some of the former inhabitants. Let it be remembered how powerful the influence of a single introduced tree or mammal has been shown to be. But in the case of an island, or of a country partly surrounded by barriers, into which new and better adapted forms could not freely enter, we should then have places in the economy of nature which would assuredly be better filled up, if some of the original inhabitants were in some manner modified; for, had the area been open to immigration, these same ## CHAPTER V. LAWS OF VARIATION. Effects of external conditions — Use and disuse, combined with natural selection; organs of flight and of vision — Acclimatisation — Correlation of growth — Compensation and economy of growth — False correlations—Multiple, rudimentary, and lowly organised structures variable—Parts developed in an unusual manner are highly variable: specific characters more variable than generic: secondary sexual characters variable — Species of the same genus vary in an analogous manner — Reversions to long-lost characters — Summary. I have hitherto sometimes spoken as if the variations -so common and multiform in organic beings under domestication, and in a lesser degree in those in a state of nature—had been due to chance. This, of course, is a wholly incorrect expression, but it serves to acknowledge plainly our ignorance of the cause of each particular variation. Some authors believe it to be as much the function of the reproductive system to produce individual differences, or very slight deviations of structure, as to make the child like its parents. But the much greater variability, as well as the greater frequency of monstrosities, under domestication or cultivation, than under nature, leads me to believe that deviations of structure are in some way due to the nature of the conditions of life, to which the parents and their more remote ancestors have been exposed during several generations. I have remarked in the first chapter—but a long catalogue of facts which cannot be here given would be necessary to show the truth of the remark—that the reproductive system is eminently susceptible to changes in the conditions of life; and to ## CHAPTER VI. #### DIFFICULTIES ON THEORY. Difficulties on the theory of descent with modification—Transitions—Absence or rarity of transitional varieties—Transitions in habits of life—Diversified habits in the same species—Species with habits widely different from those of their allies—Organs of extreme perfection—Means of transition—Cases of difficulty—Natura non facit saltum—Organs of small importance—Organs not in all cases absolutely perfect—The law of Unity of Type and of the Conditions of Existence embraced by the theory of Natural Selection. Long before having arrived at this part of my work, a crowd of difficulties will have occurred to the reader. Some of them are so grave that to this day I can never reflect on them without being staggered; but, to the best of my judgment, the greater number are only apparent, and those that are real are not, I think, fatal to my theory. These difficulties and objections may be classed under the following heads:—Firstly, why, if species have descended from other species by insensibly fine gradations, do we not everywhere see innumerable transitional forms? Why is not all nature in confusion instead of the species being, as we see them, well defined? Secondly, is it possible that an animal having, for instance, the structure and habits of a bat, could have been formed by the modification of some animal with wholly different habits? Can we believe that natural selection could produce, on the one hand, organs of trifling importance, such as the tail of a giraffe, which serves as a fly-flapper, and, on the other hand, organs of and then proceeding to another, like a kestrel, and at other times standing stationary on the margin of water, and then dashing like a kingfisher at a fish. In our own country the larger titmouse (Parus major) may be seen climbing branches, almost like a creeper; it often, like a shrike, kills small birds by blows on the head; and I have many times seen and heard it hammering the seeds of the yew on a branch, and thus breaking them like a nuthatch. In North America the black bear was seen by Hearne swimming for hours with widely open mouth, thus catching, almost like a whale, insects in the water. As we sometimes see individuals of a species following habits widely different from those of their own species and of the other species of the same genus, we might expect, on my theory, that such individuals would occasionally have given rise to new species, having anomalous habits, and with their structure either slightly or considerably modified from that of their proper type. And such instances do occur in nature. Can a more striking instance of adaptation be given than that of a woodpecker for climbing trees and for seizing insects in the chinks of the bark? Yet in North America there are woodpeckers which feed largely on fruit, and others with elongated wings which chase insects on the wing: and on the plains of La Plata, where not a tree grows, there is a woodpecker, which in every essential part of its organisation, even in its colouring, in the harsh tone of its voice, and undulatory flight, told me plainly of its close blood-relationship to our common species; yet it is a woodpecker which never climbs a tree! Petrels are the most aërial and oceanic of birds, yet in the quiet Sounds of Tierra del Fuego, the Puffinuria berardi, in its general habits, in its astonishing power of diving, its manner of swimming, and of flying when unwillingly it takes flight, would be mistaken by any one for an auk or grebe; nevertheless, it is essentially a petrel, but with many parts of its organisation profoundly modified. On the other hand, the acutest observer by examining the dead body of the water-ouzel would never have suspected its sub-aquatic habits; yet this anomalous member of the strictly terrestrial thrush family wholly subsists by diving,—grasping the stones with its feet and using its wings under water. He who believes that each being has been created as we now see it, must occasionally have felt surprise when he has met with an animal having habits and structure not at all in agreement. What can be plainer than that the webbed feet of ducks and geese are formed for swimming? yet there are upland geese with webbed feet which rarely or never go near the water; and no one except Audubon has seen the frigate-bird, which has all its four toes webbed, alight on the surface of the sea. On the other hand grebes and coots are eminently aquatic, although their toes are only bordered by membrane. What seems plainer than that the long toes of grallatores are formed for walking over swamps and floating plants, yet the water-hen is nearly as aquatic as the coot; and the landrail nearly as terrestrial as the quail or partridge. In such cases, and many others could be given, habits have changed without a corresponding change of structure. The webbed feet of the upland goose may be said to have become rudimentary in function, though not in structure. In the frigatebird, the deeply-scooped membrane between the toes shows that structure has begun to change. He who believes in separate and innumerable acts of creation will say, that in these cases it has pleased the Creator to cause a being of one type to take the place of one of another type; but this seems to me only re- stating the fact in dignified language. He who believes in the struggle for existence and in the principle of natural selection, will acknowledge that every organic being is constantly endeavouring to increase in numbers; and that if any one being vary ever so little, either in habits or structure, and thus gain an advantage over some other inhabitant of the country, it will seize on the place of that inhabitant, however different it may be from its own place. Hence it will cause him no surprise that there should be geese and frigate-birds with webbed feet, living on the dry land or most rarely alighting on the water; that there should be long-toed corncrakes living in meadows instead of in swamps; that there should be woodpeckers where not a tree grows; that there should be diving thrushes, and petrels with the habits of auks. Organs of extreme perfection and complication .- To suppose that the eye, with all its inimitable contrivances for adjusting the focus to different distances, for admitting different amounts of light, and for the correction of spherical and chromatic aberration, could have been formed by natural selection, seems, I freely confess, absurd in the highest possible degree. Yet reason tells me, that if numerous gradations from a perfect and complex eye to one very imperfect and simple, each grade being useful to its possessor, can be shown to exist; if further, the eye does vary ever so slightly, and the variations be inherited, which is certainly the case; and if any variation or modification in the organ be ever useful to an animal under changing conditions of life, then the difficulty of believing that a perfect and complex eye could be formed by natural selection, though insuperable by our imagination, can hardly be considered real. How a nerve comes to be sensitive to #### CHAPTER VII. #### INSTINCT. Instincts comparable with habits, but different in their origin— Instincts graduated—Aphides and ants—Instincts variable— Domestic instincts, their origin—Natural instincts of the cuckoo, ostrich, and parasitic bees—Slave-making-ants—Hive-bee, its cell-making instinct—Difficulties on the theory of the Natural Selection of instincts—Neuter or sterile insects—Summary. THE subject of instinct might have been worked into the previous chapters; but I have thought that it would be more convenient to treat the subject separately, especially as so wonderful an instinct as that of the hivebee making its cells will probably have occurred to many readers, as a difficulty sufficient to overthrow my whole theory. I must premise, that I have nothing to do with the origin of the primary mental powers, any more than I have with that of life itself. We are concerned only with the diversities of instinct and of the other mental qualities of animals within the same class. I will not attempt any definition of instinct. It would be easy to show that several distinct mental actions are commonly embraced by this term; but every one understands what is meant, when it is said that instinct impels the cuckoo to migrate and to lay her eggs in other birds' nests. An action, which we ourselves should require experience to enable us to perform, when performed by an animal, more especially by a very young one, without any experience, and when performed by many individuals in the same way, without their knowing for what purpose it is performed, is usually said to be instinctive. ## CHAPTER VIII. #### HYBRIDISM. Distinction between the sterility of first crosses and of hybrids—Sterility various in degree, not universal, affected by close interbreeding, removed by domestication—Laws governing the sterility of hybrids—Sterility not a special endowment, but incidental on other differences—Causes of the sterility of first crosses and of hybrids—Parallelism between the effects of changed conditions of life and crossing—Fertility of varieties when crossed and of their mongrel offspring not universal—Hybrids and mongrels compared independently of their fertility—Summary. THE view generally entertained by naturalists is that species, when intercrossed, have been specially endowed with the quality of sterility, in order to prevent the confusion of all organic forms. This view certainly seems at first probable, for species within the same country could hardly have kept distinct had they been capable of crossing freely. The importance of the fact that hybrids are very generally sterile, has, I think, been much underrated by some late writers. On the theory of natural selection the case is especially important, inasmuch as the sterility of hybrids could not possibly be of any advantage to them, and therefore could not have been acquired by the continued preservation of successive profitable degrees of sterility. I hope, however, to be able to show that sterility is not a specially acquired or endowed quality, but is incidental on other acquired differences. In treating this subject, two classes of facts, to a large extent fundamentally different, have generally been confounded together; namely, the sterility of two species ## CHAPTER IX. ON THE IMPERFECTION OF THE GEOLOGICAL RECORD. On the absence of intermediate varieties at the present day—On the nature of extinct intermediate varieties; on their number—On the vast lapse of time, as inferred from the rate of deposition and of denudation—On the poorness of our palæontological collections—On the intermittence of geological formations—On the absence of intermediate varieties in any one formation—On the sudden appearance of groups of species—On their sudden appearance in the lowest known fossiliferous strata. In the sixth chapter I enumerated the chief objections which might be justly urged against the views maintained in this volume. Most of them have now been discussed. One, namely the distinctness of specific forms, and their not being blended together by innumerable transitional links, is a very obvious difficulty. I assigned reasons why such links do not commonly occur at the present day, under the circumstances apparently most favourable for their presence, namely on an extensive and continuous area with graduated physical conditions. I endeavoured to show, that the life of each species depends in a more important manner on the presence of other already defined organic forms, than on climate; and, therefore, that the really governing conditions of life do not graduate away quite insensibly like heat or moisture. I endeavoured, also, to show that intermediate varieties, from existing in lesser numbers than the forms which they connect, will generally be beaten out and exterminated during the course of further modification and improvement. main cause, however, of innumerable intermediate links not now occurring everywhere throughout nature de- #### CHAPTER X. ON THE GEOLOGICAL SUCCESSION OF ORGANIC BEINGS. On the slow and successive appearance of new species — On their different rates of change — Species once lost do not reappear — Groups of species follow the same general rules in their appearance and disappearance as do single species — On Extinction — On simultaneous changes in the forms of life throughout the world — On the affinities of extinct species to each other and to living species — On the state of development of ancient forms — On the succession of the same types within the same areas — Summary of preceding and present chapters. LET us now see whether the several facts and rules relating to the geological succession of organic beings, better accord with the common view of the immutability of species, or with that of their slow and gradual modification, through descent and natural selection. New species have appeared very slowly, one after another, both on the land and in the waters. Lyell has shown that it is hardly possible to resist the evidence on this head in the case of the several tertiary stages; and every year tends to fill up the blanks between them. and to make the percentage system of lost and new forms more gradual. In some of the most recent beds, though undoubtedly of high antiquity if measured by years, only one or two species are lost forms, and only one or two are new forms, having here appeared for the first time, either locally, or, as far as we know, on the face of the earth. If we may trust the observations of Philippi in Sicily, the successive changes in the marine inhabitants of that island have been many and most gradual. The secondary formations are more broken; but, as Bronn has remarked, neither the appearance nor disappearance of their many now extinct species has been simultaneous in each separate formation. Species of different genera and classes have not changed at the same rate, or in the same degree. the oldest tertiary beds a few living shells may still be found in the midst of a multitude of extinct forms. Falconer has given a striking instance of a similar fact, in an existing crocodile associated with many strange and lost mammals and reptiles in the sub-Himalayan deposits. The Silurian Lingula differs but little from the living species of this genus; whereas most of the other Silurian Molluscs and all the Crustaceans have changed greatly. The productions of the land seem to change at a quicker rate than those of the sea, of which a striking instance has lately been observed in Switzer-There is some reason to believe that organisms, land. considered high in the scale of nature, change more quickly than those that are low: though there are exceptions to this rule. The amount of organic change, as Pictet has remarked, does not strictly correspond with the succession of our geological formations; so that between each two consecutive formations, the forms of life have seldom changed in exactly the same degree. Yet if we compare any but the most closely related formations, all the species will be found to have undergone some change. When a species has once disappeared from the face of the earth, we have reason to believe that the same identical form never reappears. strongest apparent exception to this latter rule, is that of the so-called "colonies" of M. Barrande, which intrude for a period in the midst of an older formation. and then allow the pre-existing fauna to reappear; but Lyell's explanation, namely, that it is a case of temporary migration from a distinct geographical province, seems to me satisfactory. ### CHAPTER XI. GEOGRAPHICAL DISTRIBUTION. Present distribution cannot be accounted for by differences in physical conditions — Importance of barriers — Affinity of the productions of the same continent — Centres of creation — Means of dispersal, by changes of climate and of the level of the land, and by occasional means — Dispersal during the Glacial period co-extensive with the world. In considering the distribution of organic beings over the face of the globe, the first great fact which strikes us is, that neither the similarity nor the dissimilarity of the inhabitants of various regions can be accounted for by their climatal and other physical conditions. Of late, almost every author who has studied the subject has come to this conclusion. The case of America alone would almost suffice to prove its truth: for if we exclude the northern parts where the circumpolar land is almost continuous, all authors agree that one of the most fundamental divisions in geographical distribution is that between the New and Old Worlds; yet if we travel over the vast American continent, from the central parts of the United States to its extreme southern point, we meet with the most diversified conditions; the most humid districts, arid deserts, lofty mountains, grassy plains, forests, marshes, lakes, and great rivers, under almost every temperature. There is hardly a climate or condition in the Old World which cannot be paralleled in the New-at least as closely as the same species generally require; for it is a most rare case to find a group of organisms confined to any small spot, having conditions peculiar in only a slight degree; for instance, small areas in the Old World could be pointed out hotter than any in the New World, yet these are not inhabited by a peculiar fauna or flora. Notwithstanding this parallelism in the conditions of the Old and New Worlds, how widely differ- ent are their living productions! In the southern hemisphere, if we compare large tracts of land in Australia, South Africa, and western South America, between latitudes 25° and 35°, we shall find parts extremely similar in all their conditions, yet it would not be possible to point out three faunas and floras more utterly dissimilar. Or again we may compare the productions of South America south of lat. 35° with those north of 25°, which consequently inhabit a considerably different climate, and they will be found incomparably more closely related to each other, than they are to the productions of Australia or Africa under nearly the same climate. Analogous facts could be given with respect to the inhabitants of the sea. A second great fact which strikes us in our general review is, that barriers of any kind, or obstacles to free migration, are related in a close and important manner to the differences between the productions of various regions. We see this in the great difference of nearly all the terrestrial productions of the New and Old Worlds, excepting in the northern parts, where the land almost joins, and where, under a slightly different climate, there might have been free migration for the northern temperate forms, as there now is for the strictly arctic productions. We see the same fact in the great difference between the inhabitants of Australia, Africa, and South America under the same latitude: for these countries are almost as much isolated from each other as is possible. On each continent, also, we see the same fact; for on the opposite sides of #### CHAPTER XII. GEOGRAPHICAL DISTRIBUTION—continued. Distribution of fresh-water productions—On the inhabitants of oceanic islands—Absence of Batrachians and of terrestrial Mammals—On the relation of the inhabitants of islands to those of the nearest mainland—On colonisation from the nearest source with subsequent modification—Summary of the last and present chapters. As lakes and river-systems are separated from each other by barriers of land, it might have been thought that fresh-water productions would not have ranged widely within the same country, and as the sea is apparently a still more impassable barrier, that they never would have extended to distant countries. But the case is exactly the reverse. Not only have many fresh-water species, belonging to quite different classes, an enormous range, but allied species prevail in a remarkable manner throughout the world. I well remember, when first collecting in the fresh waters of Brazil, feeling much surprise at the similarity of the fresh-water insects, shells, &c., and at the dissimilarity of the surrounding terrestrial beings, compared with those of Britain. But this power in fresh-water productions of ranging widely, though so unexpected, can, I think, in most cases be explained by their having become fitted, in a manner highly useful to them, for short and frequent migrations from pond to pond, or from stream to stream; and liability to wide dispersal would follow from this capacity as an almost necessary consequence. We can here consider only a few cases. In regard to #### CHAPTER XIII. MUTUAL AFFINITIES OF ORGANIC BEINGS: MORPHOLOGY: EMBRYOLOGY: RUDIMENTARY ORGANS. Classification, groups subordinate to groups — Natural system — Rules and difficulties in classification, explained on the theory of descent with modification — Classification of varieties — Descent always used in classification — Analogical or adaptive characters — Affinities, general, complex and radiating — Extinction separates and defines groups — Morphology, between members of the same class, between parts of the same individual — Embryology, laws of, explained by variations not supervening at an early age, and being inherited at a corresponding age — Rudimentary organs; their origin explained — Summary. From the first dawn of life, all organic beings are found to resemble each other in descending degrees, so that they can be classed in groups under groups. This classification is evidently not arbitrary like the grouping of the stars in constellations. The existence of groups would have been of simple signification, if one group had been exclusively fitted to inhabit the land, and another the water; one to feed on flesh, another on vegetable matter, and so on; but the case is widely different in nature; for it is notorious how commonly members of even the same sub-group have different habits. In our second and fourth chapters, on Variation and on Natural Selection, I have attempted to show that it is the widely ranging, the much diffused and common, that is the dominant species belonging to the larger genera, which vary most. The varieties, or incipient species, thus produced ultimately become converted, as I believe, into new and distinct species; and these, on the principle of inheritance, tend to produce other new and dominant #### CHAPTER XIV. RECAPITULATION AND CONCLUSION. Recapitulation of the difficulties on the theory of Natural Selection — Recapitulation of the general and special circumstances in its favour — Causes of the general belief in the immutability of species — How far the theory of natural selection may be extended — Effects of its adoption on the study of Natural history — Concluding remarks. As this whole volume is one long argument, it may be convenient to the reader to have the leading facts and inferences briefly recapitulated. That many and serious objections may be advanced against the theory of descent with modification through natural selection, I do not deny. I have endeavoured to give to them their full force. Nothing at first can appear more difficult to believe than that the more complex organs and instincts should have been perfected, not by means superior to, though analogous with, human reason, but by the accumulation of innumerable slight variations, each good for the individual possessor. Nevertheless, this difficulty, though appearing to our imagination insuperably great, cannot be considered real if we admit the following propositions, namely,—that gradations in the perfection of any organ or instinct which we may consider, either do now exist or could have existed, each good of its kind,—that all organs and instincts are, in ever so slight a degree, variable,-and, lastly, that there is a struggle for existence leading to the preservation of each profitable deviation of structure or instinct. The truth of these propositions cannot, I think, be disputed. be able to gauge with some security the duration of these intervals by a comparison of the preceding and succeeding organic forms. We must be cautious in attempting to correlate as strictly contemporaneous two formations, which include few identical species, by the general succession of their forms of life. As species are produced and exterminated by slowly acting and still existing causes, and not by miraculous acts of creation and by catastrophes; and as the most important of all causes of organic change is one which is almost independent of altered and perhaps suddenly altered physical conditions, namely, the mutual relation of organism to organism,—the improvement of one being entailing the improvement or the extermination of others; it follows, that the amount of organic change in the fossils of consecutive formations probably serves as a fair measure of the lapse of actual time. A number of species, however, keeping in a body might remain for a long period unchanged, whilst within this same period, several of these species, by migrating into new countries and coming into competition with foreign associates. might become modified; so that we must not overrate the accuracy of organic change as a measure of time. During early periods of the earth's history, when the forms of life were probably fewer and simpler, the rate of change was probably slower; and at the first dawn of life, when very few forms of the simplest structure existed, the rate of change may have been slow in an extreme degree. The whole history of the world, as at present known, although of a length quite incomprehensible by us, will hereafter be recognised as a mere fragment of time, compared with the ages which have elapsed since the first creature, the progenitor of innumerable extinct and living descendants, was created. In the distant future I see open fields for far more